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ABSTRACT

The stability of a viscous Maclaurin spheroid is solved

asymptotically for small kinematic viscosity, v . It is shown

that, in this limit, the frequency of oscillation, n, with respect

to the mode which becomes neutrally stable in the absence of

viscosity at the point of bifurcation (where the eccentricity,

e, of the meridional section is approximately 0. 8127), is

25vn20

n=n- + i- + o(v) (1)0 (e)

In the foregoing formula n0 denotes the frequency in the absence

of viscosity, a the radius of the equational section and (p(e) a

certain function of e which changes sign at e = 0. 8127 and is

positive for smaller values of e . From equation (1) it follows

that the Maclaurin spheroid is indeed unstable beyond the point of

bifurcation when viscosity is present.
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1. INTRODUCTION.

It is well known that, for an incompressible fluid mass in a state of

uniform rotation and in equilibrium under its own gravitation, a spheroid of

revolution is an exact figure of equilibrium. This is the spheroid of Maclaurin.

The stability of these spheroids with respect to infinitesimal perturbations has

been investigated in a number of classical papers by Riemann (7860), Bryan

(18881 and Cartan (1922) (see also Lebovitz, [1961]). From these investigations

it is known that, in the absence of viscosity, the Maclaurin spheroids are

stable provided that the eccentricity, e, of the meridional section is less than

0.9 529; and that, when the eccentricity exceeds this limit, the Maclaurin

spheroids are unstable by oscillations of increasing amplitude (the period of

oscillation being, in fact, equal to the angular velocity 92 ). However, it

was known, even before the upper limit e = 0. 9529 was established by Bryan,

that the Maclaurin spheroid allows a neutral mode of oscillation at e = 0. 8127,

where the ellipsoids of Jacobi branch off.
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The occurrence of a neutral mode for the Maclaurin spheroids at the

point of bifurcation is suggestive; indeed, it was categorically stated by

Thomson and Tait (1883, p. 333) that "the equilibrium in the revolutional

figure is stable or unstable according as e is less than or greater than 0. 81266."

In definitely associating the occurrence of the neutral mode (for infinitesimal

oscillations) with the onset of instability, Thomson and Tait clearly had the role

of viscosity in mind. They state, for example, "if there be any viscosity,

however slight, in the liquid or if there be any imperfectly elastic solid, however

small, floating on it or sunk within it, the equilibrium in any case of energy

either minimax or a maximum cannot be secularly stable: the only secularly

stable configurations are those in which the energy is the minimum with given

momentum." All these considerations became, of course, clarified by the

investigations of Poincare which showed that, at the point of bifurcation of the

Maclaurin sequence, it is possible to deform the Maclaurin spheroid into a

body of the same angular momentum but of lower total energy. From this last

fact one generally concludes that, should any dissipative mechanism be

operative, then it would indeed operate and induce the transitt$)n to the state

of lower energy, i. e. instability will arise. In other words, the belief and the

conjecture is that, were one to investigate the stability of a viscous Maclaurin

spheroid (again for infinitesimal perturbations) then one would find that it becomes

unstable (with an initial infinitisemal amplitude increasing exponentially with

time) when one surpasses the point of bifurcation. This last argument is usually

illustrated by simple mechanical examples (cf. Jeans, [1929], p. 201). While
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the suggestion that the objects should be unstable under the circumstances

envisaged is very reasonable, it is not a forgone conclusion that motions

consistent with the equations of hydrodynamics do exist which will allow

instability: examples are known when a normal mode analysis proves stability

in circumstances when an energy argument would suggest instability (of.,

Chandrasekhar, 1961, S103). And finally, the energy argument provides no basis

for estimating the growth rates of the unstable mode when viscosity is operative.

For these reasons, we shall consider in this paper the stability of the Maclaurin

spheroid allowing for viscosity in the limit when it is small; the assumption

of small viscosity is made, for the problem is then tractable by a boundary

layer argument.
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II. THE EQUILIBRIUM STATE

Let (x, y, z) be cartesian co-ordinates in which the z-axis is parallel

to 1 , the angular velocity of the spheroid, and in which the origin is at the

center of that body. The equation of the surface, Se, of the spheroid is then

of the form

~2 2
W2 , + -- ,
a c

2 ( Zi

where o -=(x y}) . It is convenient, for the later discussion, to

introduce oblate spheroidal co-ordinates here. For this purpose, define k and

E by
2 2

k-=a -c , E=c/k . (2.2)

The following relations then exist between a, c, k, E and the eccentricity of

the spheroid, e :

2.1 21
a=k(l+E)½, c=kE=a(l-e) ,

(2.3)
-I -1

k = ae, sin e =cot E

Oblate spheroidal co-ordinates (ý, 0, qi) are defined by

x=k(l1+ t)asinecos( ,

y =k(l+ sin 0sin( , (2.4)

z=krtcos 0
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(0< , 0 < 08< r, 0 <(p < 2 Tr) . They form an orthogonal curvilinear system,

right-handed in the order (4, e, p), and having scale factors h he and h

given by

( 2 2 2 L
h =k h ' k(- + , h =k(l+ 2)}(l- .), (2.5)

where p= cos 0 . The surfaces of equal 4 are a confocal system of spheroids

and, in virtue of the definitions (2. 2), S is the particular member

E (2.6)

of this system.

Since the material of which the spheroid is composed is supposed to be

incompressible and of uniform density N the equation of hydrostatic

equilibrium is simply

1 V - ? = constant ,(2.7)
P 2

where p is the pressure, and V is the gravitational potential. Now the

potential within the oblate spheroid (2. 1) is given by (see, for example, Routh,

1922, Art. 211)

2. 1 -A 3 z (2.8)2
rGpa c

where I, A, and A3 are constants given by
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Sdu 2 si.. 6
2 2 -ae

0 (a +u)(c +u)"00

Go de3[unl ?~ 2½

A = f 2du 2 sin (2.9)
0 (a +u) (c +u) (ae)

d u- = f( - sin-1 e]
0 (a+ U)(C +Of (ae) (l-e )o (a +u)(cZ~l" {e3{-~

Thus, equation (2. 7) may be rewritten in the form

2 2constant- TrGpac[ (AI- 2A (2.1
c((ontat_1  }2 + A3 z ] . (2.10)

p - 2wGpa c

However, since p must vanish everywhere on the equilibrium surface (2. 1)

it must be possible to rewrite equation (2. 10) in the form

-2 2
- = nGpa c3A[[I ....- A (2.11)
p 3 a c

Comparing the expressions (2.10) and (2. 11), we conclude that

a (A 1 - 2 =c A3 , (.12)2wGpa c

i.e., by equations (2.9) 1

2 21rGo 2 ~ 2 -1 312 = -3G (1-e ) [(3-Ze ) sin- e-3e(l-e PI (2.12

e
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III. PERTURBATIONS ABOUT EQUILIBRIUM

Suppose that the equilibrium solution of Section II is infinitesimally

perturbed. The fluid velocity u in the subsequent motion will satisfy the

incompressibility requirement

divu = 0 , (3.1)

and also the linearized Navier-Stokes equation

au
t+ 2xu grad 1I +vV u (3.2)

where v denotes the kinematic viscosity, and

I -2 .(3.3)

Thus u must satisfy boundary conditions on the perturbed surface S of the

fluid. These require that the normal velocity of the fluid on S should equal

the normal velocity of the boundary S itself. They also require that the normal

components of the mechanical stress tensor should vanish on S . Introducing

the rate of strain tensor R1 i, defined by

R = 1/ i8u1  u (3.4)
Rij =2 1 exj i xI

the viscous stress tensor is vpR1 j . Since uis a quantity of the first order

of smallness, the differences in the values of R and R,, on S from their

value on Se are of second order of smallness, and can therefore be neglected.
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It follows that the demands that vpR, 9 and vpR , should vanish on S require

either v = 0, or [R e]s = [R ]S 0 , (3.5)
e e

where we have used [U]v to denote the value of a quantity U on a surface V

The remaining stress condition is

[p - ZvpR ]ts = 0 (3.6)

and it is again convenient to extrapolate this condition back to the reference

surface S . For this purpose we write p and V in the formse

P = Pe + 6p, V = V e+ 6V ,(3.7)

where pe and Ve are the values of p and V in the equilibrium solution

(cf. eqs. [2. 8] and [2. 11]). We also introduce • t) the displacement of a

particle of fluid at time t from its equilibrium position x . Clearly we have

%ud = at,/at ,(3.8)

to first order. Moreover, it is evident that

[PS1= [Pels + [6 P]S
e

"- [Pe+J'grad Pe]S +[6PPS (3.94
e e
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Thus condition (3.6) is equivalent to

[p +" grad p +6p - 2vpR•]S
e ' S e 0 V (3.10)

or, since equations (2.7) and (3. 3) imply that

Pe 1 2'i 6V2= (311(- -V -- +( -Q - 6V+ Const, (3.U)
P e 2 pp

we have (absorbing the constant on the right-hand side of eq. [3. 11])

[+pH-ZvpR] --Ie 0 ,(3.12)

where

S= p6V+g egrad Pe (3.13)

The significance of 0 may be seen by considering the changes 6W in

the gravitational energy W of the configuration

dxdx'
W - G vp f-fV (3.14)

consequent upon the deformation • . It is evident from equation (3.14) that

dxdx'
6V -Gp v fVV ,

=-P 6V v(?ýdx . (3.15)
e
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On the other hand, the work done against the pressure forces in the deformation

. is, tQ first order,

fVe • "grad p dx . (3.16)
e,~

Thus the sum of A(3.15) and (3.16), namely fV 1d3 is the work required
e

in order to subject the equilibrium configuration quasi-statically to the

deformation. In the dynamical problem studied herein, it will equal the sum of

two parts, namely, the decrease in kinetic energy and the energy degraded to

heat by the action of viscosity.

IV. GRAVITATIONAL EFFECTS

In calculating 6V, the surface deformation may be divided into its harmonic

components P n(%) e imP, and each may be considered separately. We will

write, therefore,

[B I KnmPnm (R) e , (4.1)

where

(2n+l)(n-m) I f d T Id eim IKn,m = 41r(n+m) I d• f d [L IS Pnm64 e- (4.2 )
-1 0 e

The gravitational effect of this displacement may be likened to the addition of

a surface mass distribution to Se of density p[ The gravitational
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potential to which this gives rise must be a continuous solution of Laplace's

equation, and must therefore be of the form

Qnm(is) em
C n m Q im -

6V = (4.3)

C P n Pnm (I) ime , ( _E
n, m( E) nn((2)e

where Q m(it) denotes the associated Legendre function of the second kind

of the orders n and m indicated, and of imaginary argument . For complex

arguments, we adopt Hobson's definitions of P nm(z) (see, for example, Hobson,

1931, § 54):

S2 Lm dmPn(z m 2 _m dmQn(z
n dzm Q n(Z) - dzm

The Wronskian relationship between these functions takes the form

P- m d Mm d m H (-)(n+m)I 11 (4)p m (z) Td(_ Qnm (z) (z) T Pnm(Z) (n-m~l
n znz (n-in)! I- z (

(cf. Hobson, loc. cit., § 148).

In order to determine the constant C appearing in the solution (4. 3) ,inm

we apply Gauss' theorem to an elementary volume containing the surface mass

distribution:
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which, using equation (4. 3), reduces to

__M___ d Qn ;) - I_.. -S Pn Mo _4dGpKn (4.6)
n, Q nm (it) L n pn m ) n n=E n

By using relation (4.4), we finally obtain

41_G_ -c~(~L~ n-m)|i m(I}Q
C = - (n-m)1 K P (iE)Q m(iE) (4.7)

n,m 2 (n+m)e nm n n

It follows that

6 i-)m(n-m) K m (iE) Q Pn(a) P m) e ine (4.81
S V e 2 (n+m)I nm n n4n

In order to calculate [0]S ,we note that, according to equation (2.11),
e

grad p Gp2 al3 (1-e2)'A hl, (4.9)ga e = 3

where 1 is a unit vector in the direction of increasing •

Thus, by equation (4.1)

:grad pJs = -2__ G p2 a 3(l-e)A K Pnm(L} eimp
eS e 3 n,m n

e

Hence

=4TrGp 2 i( 1 ) m (n-) m m 1 3 Zi2 iq
IHence 2 4(GE) Qi' ~-) n(iE) -Ia3 e~l-e2)A3 K Pn M•tm

e e (n+m)| Pn nl2e3]n,rm n

(4.11)
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In the studies which follow, we will be particularly concerned with the

case n = m = 2 . For this harmonic, we have

P2 2 (iE) =- 3(1+E2) , Q2 2(iE) = i[3(l+E2 )cot-I E- (5E+3E] (4.12)
(1+E 2

and o takes the form

eMs - irGv 2 [e(1-e )a (3+10e2) -(3+8e 2 - 8e 4 ) sin-I e] K1 P2 (4e
e 2e 3 P2

(4.13)

V. THE INVISCID SOLUTIONS

Cartan (1922) and others (see, for example, Bryan, 1888) have examined

the case v = 0 in great detail, and have shown that all the normal modes of

oscillation can be generated from polynomial solutions of Poincare's differential

equation:

Pa2 a 2 42 82•÷ (+ - 2• =0 ,(5.1)

ex2 ay2 s az2

where s = 8/at . Since boundary conditions (3. 5) are automatically satisfied

when v = 0, there is only one condition (viz. eq. [3.12]) to be applied on
2

S , and this determines s for the normal mode considered. Although

That Poincare's equaticn arises may be seen simply by solving eq. [3. 2] for
u in terms of grad 11 and substituting the result into eq. [3. 1].
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equation (5.1) is hyperbolic when - 4 22 < s < 0 and the boundary condition

(3.12) is the Dirichlet type, Cartan was able to establish that, even in this

case, the polynomial solutions are unique.

We can illustrate the solution simply for the important case

II = h(x+iy) , (h = constant) , (5.2)

which evidently satisfies equation (5.1). From equation (3.2) we find

- 2h(x+iy) 2h(x+iy) (5.3)(s-2iM) , uy = (s-2io) ' z = 0

It should be noticed in passing that this solution satisfies

Vu = o . (5.4)

According to equation (5. 3), u• is given by

2 2* x Zh u sa e(l-e) (-u+ -Yu + u
a a c

(5.5)

e-(S-2ie2) h(x+ iy)

Thus, on S we have
e

1 2 2 iq (5.6)[II]S =j-a hP 2 (1) 5.e

e

Chu I 2a he(l-e)2 2 eZieP
thU Se- 3(s-2iM) P2(i1 e (5.7)
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From equation (5. 7), in the notation of equation (4. 1), we find

2a h-e2(5)8
2,2 3s(s-2i() (5.8)

Thus drawing together equations (5. 6),,(5. 8), (4.13) and (3.12), we find

1 2 2ae(l-e2 ) 1 2  1 2 2 4I-a2h+2s(I-2W ) [e(-e) (3+10e2)-(3+8e-8e4)sin e 03 3s(s-2ill) ?e2

i. e.

s(s-2i ) = (i-er)z [e(i-e (3 +10e2) -(3+8e2- 8e4) sin-I e (5.9)
e

This is Cartan's result (loc. cit. p. 338). Writing it in the form

s(s-2ig) + Q = 0 (5.10)

we find that either s = s or s = sb where

sa = i[ -(Q+ +2)] = in a (say) , (5. lla)

s b = t[Q + (Q + 0Z • inb(say) .(5. Ulb)

At the point of bifurcation of the Maclaurin sequence, Q is zero, the root

(5. lla) is therefore zero, and the spheroid is neutrally stable. Beyond

bifurcation, sa is again non-zero, and the spheroid is again stable. However,

if the argument of Thomson and Tait is correct (see Section I), viscosity should

introduce into root (5. lla) a real part which changes sign from negative to

positive on passing through the point of bifurcation. This possibility is studied

in the next section.
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Before leaving this solution it is useful to compute the rate of strain

tensor. According to equations (3.4) and (5. 3) we find that, in the cartesian

coordinate system (x,y, z)

2h -) 1 (5.12)

The rate of strain is thus constant throughout the spheroid. It may be written

simply in dyadic form

2hRJJ-- - UT (5.13)

where % is a vector whose (x, y, z)- components are

j,=(4, i, 0) , (5.14)

and whose (ý, 0, 9) components are therefore

%=(sin p, cos 4', i) ei , (5.15)

where

Qo4 # (lu. 2 O 1 (.6COs=2 2)2 , sin- - (5.16

By equations (5.13) and (5.15), we find immediately that
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2h sin 2 LJ e21(p 2h sitnq cos tý e 21€
R ~~~ (S 2ir S2n

(5.17)

2hi sin 41 e 2i
R( (s-2ir2) "

VI. THE EFFECT OF A SMALL VISCOSITY

The solution obtained in Section V for an inviscid fluid can, in principle,

be modified in two ways when the fluid has a small kinematic viscosity v .

First, the equations of motion with v a 0 may not be satisfied by the inviscid

solution so that correction terms of order v are required. In the present

problem, however, in which we are concerned with the solution (5. 3), the

viscous terms of equation (3. 2) vanish identically in virtue of equation (5.4),

and no such modifications of the inviscid solution are required. Second, the boundary

conditions which must be satisfied by the solution for a viscous fluid include

the requirements (cf. eq. (3. 5]) that the tangential components of R must
ij

vanish at the free surface S . If, as in the present problem, these conditions

are not satisfied by the inviscid solution, then a boundary layer in which viscous

effects are significant must be introduced in order to make the necessary

adjustments to the tangential stresses. We suppose that the leading terms in

the boundary layer vanish at its inner edge so that the inviscid solution is not

modified to the order of these terms. However, in satisfying the conditions on

the tangential stress components, the condition on the normal component is



-18- #373

invalidated, albeit to a higher order in v . In order to correct this, All the

solutions of the inviscid problem involving the surface harmonics for which

m = 2 must be excited, including the one with n = 2 . Equation (5.9) is

consequently modified.

For small values of the viscosity (v<< a 2Q) it is accordingly convenient

to proceed as follows. Write

u= uO+u T 11= II+11 , + 41 (6.1)
0 1'0 ~ 61

where u and 11 are solutions of the inviscid equations with m = n = 2
~0 0

but which do not obey equation (5.9), and u1 and 11, , are the leading terms

of the modification due to viscosity which vanish in the interior of the fluid.

In addition D0 is the value of 0 arising from the perturbation.of the free

surface due to u0) with a corresponding definition for Dl " Then, from

equation (3.12), we have

[4+ pH - ZvpR IS = 0 , (6.2)
e

i. e.

o0 +P1RO]se + [D +p 11
1 - 2vPRo;]Se = 0 , (6.3)

as the condition on the normal stress to be satisfied by the solution. We are

particularly interested in the harmonic n = m = 2, and so we multiply equation

(6. 3) by P 2 (R) e-2iV and integrate over the surface of the spheroid,obtaining



#37 3 -19-

Spa h(l + Q(6.4)S(S-2• +o--0(64

where we have used the theory of Section V. Here y is the contribution from

the second term of equation (6.3):

1 2x zie 2 -2i 9 ,
3=27 f du f dp[1 +PHI - 2vpR0o, (ln )e . (6.5)

-1 0 e

In the normal mode theory, it is assumed that time enters the dependent variables

st
through the factor e so that

[h ] [ (6.6)

e = Se

Using equations (4. 1) and 4. 13) and the definition of Q (cf. eqs. [5. 9 and

[5.10]), it follows that

1 21!2

2 dL f df , [ Cl+E II n (l-(h uz) e-7". (6.7)32v-1 _ 0 sE it Ott Se

Our main purpose here is to evaluate -y

An examination of equations (3.1), (3. 2) and (3. 5) suggests that we assume

that the boundary layer is of the conventional type in which

u 1 = O(v3), u 1 =0(vT), 8/8 =0(Va-)

8/80 =0(1), a/8ei =0(1) , (6. 8)

so that

ul =(V), n =O(v) (6.9)

all orders of magnitude referring to the dependence upon. v
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The leading terms of the 0, 9 and t components of the equations of momentum

(3.2) and the complete equation of continuity (3.1) may then be written

82

h _ s) + 2QcosutU=o , (6.10)

811

h- --=20 sin'• Ul , (6.12)
h at lqp

2 8u ai 2 1 2ik(E + p2 )u10
(l+E )h t- - 11(- )ah 0  ]+ 2121 = 0 . (6.13)ý at 8 0 10 (I+E 2) 11(1-Rz)

In all of these equations h and h are to be evaluated at , = E , and

are therefore functions of 1. alone. Further, in equation (6.13), we have made

use of the property that all dependent variables depend on 9, only though the

factor e2i9 . Combining equations (6.12) and (6.13) we obtain

a (l+E)Qh{(1-o ) [1"[ - -h U1r1)
2sE

= 2 hr sini(1-1.2 )u1 + Qhc. (E2 + iL2) sin * (iu1 -cos÷ u10 )

-s a* [('I•L2)4(z (EZ+IZ 2u 1 0 ] • (6.14)
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Anticipating that y is of order v, we may assume for the purposes of

simplifying equation (6.14) that Q= -s(s-2i r4 (cf. eq. 5.10), whence

a , - (1+E2) Q
{ -•Z}[l 2sE ht u]

= (E2+ ýLz ) h E sin ý f u _ u ) l c s ) S 2 a
2E2

-(u 1 + iu 1 ) (1-cosi) (s+2tQ cosf)]

+ k( s-2i) _((1-Z)a/2(EZ+LZ) ] 1 (6.15)

The values of U 1 and u required for the evaluation of the right-hand

side of equation (6.15) follow from equations (6.10) and (6.11). Write

2 2
V& - s+2itcosý , = s-21Q cosq, (6.16)
hj h t

where the real parts of a and P are both positive. The general solution of

equations (6.10) and (6.11) which vanishes when v 2 (E-;) is large and positive

is then

= 1Ae•-E) + L BeP( ,-E)
Ule 2 2

U 1 :i•e -•tE)+ iBeP(_-E) . (6.17)
1,P 22
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The values of the coefficient A(•, q) and B(i, (p) are found from the condition

that the tangential components of stress vanish at , = E . Using equations

(5.17), we have

1 (A+pB) Zh sin D cosj Z19  (6.18)

4h - S-2ifl

1 21h sin tI e2i(,
4h(A-PB= s-2i0

and consequently

4k2E 2t

A = 4khE_ (Cos 1-(L•)3 e 9P

a(l + E )} (s-2il)
(6.19)

4khE2 21-V

B = 4khE (cos•U + 1)(l-Z e2

P(l+ EZ)½ (s-2i1l0

It is noted that the a Priori assumptions (6.8) about the boundary layer have

led to a reasonable solution which may easily be shown to be consistent provided

neither a nor P vanishes, i.e. if we write

s = 2i1 cos i0 , (0< 4O < H) (6.20)

provided we exclude the neighborhood of the singularities 0 = and r = -d0

4JO is real for the range 0. 4?85 < e < 0. 9529 ... of eccentricity. Sincethis
range contains the point of bifurcation, the singularities defined by equations
(6. 20) are germane to our discussion.
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These zones require special treatment which we shall postpone until the next

h.
section. We merely observe here that their contribution to y is of order vs

Substituting the results (6.17) and (6.19) into the first term appearing on

the right-hand side of equation (6.15). integrating with respect to , from

-o0 to 0, and noting that II, and u l vanish in the interior of the fluid, we

find that

1 2sE h;ul;]Se

219
2h- Lhvh(l+EZ2a(l1-ILZ)a sineie

kE(s-2iD l1+ cos COS + (1 - cos J

h( s-20f~8 2  2+,2)-
0 Z a -L •(E +E ) U19] d; . (6.21)

The determination of y is completed by using the form of Ro0; given by

equation (5.17)

2 2 21p7
[ R is 4hvE (11-•• e"i.

20;; e (E 2 + ( .)(s -22

and adding it to equation (6. 21) giving

2 (1 +E2 I hu

P(I-ýL [11 2sE h ;o]e

(6.23)

- o 2 Zi9 7 0 k [2if) a (L R+)u2 1.
(s-21nl) %I&l-~e +f Z0- E T8-& 1(-L)(E2+11& )u 1 d;
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Carrying out the integration (6. 5), assuming that the orders of integration

with respect to ý and 1L can be inverted, we obtain

l~hv p
Y= s-2i ) (6.24)

and hence, from equation (6. 4),

Q 10
1 + s(s-Qi +) 2 -0 (6.25)a (s-Zif)

is the modified dispersion relationship for the harmonic n = m 2, neglecting

powers of v above the first. Let one of its roots be

s = so0 +s 1  (6.26)

where so is one of the roots (5.11) and s1 is of order v * On substituting

into equation (6.25) and neglecting all powers of sI above the first, we find

that

5vs 0  5 20

2 =V V 2 (6.27)
s1 -- 26 T

a _a(s ) a Q

2For small values of Q, equation (5.11) implies that Q --sO . Thus,

according to equation (6. 27) s1 * -5 v/a2 , in agreement with the result of

Lamb (1881) for the oscillations of a slightly viscous sphere (see also
2

Chandrasekhar, 1959). Since s2 is always negative up to the point of

ordinary instability (e I 0.9529), the stability of the slightly viscous

spheroid depends on the sigr t:f Q . Now Q is positive between e = 0 (the
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sphere) and e -1 0. 8127 (where the Maclaurin sequence bifurcates) and is

negative between this value of e and e 2- 0.9529. It follows that, beyond

bifurcation, the value of sI is real and positive so that oscillations of the

Maclaurin spheroid in which the harmonic n = m = 2 are excited increase

exponentially in amplitude with time in agreement with the conclusion based on

the energy argument of Section I. Presumably once this instability sets in,

the configuration moves towards the lower energy Jacobi state with the same

angular momentum.

VII. THE SINGULAR CIRCLES

The theory of the boundary layer discussed in the previous section failed

in the neighborhood of the circles of latitude ý0 = Y•0, and l = - ý0' where

ý0 is defined by equation (6. 20). One still expects the boundary layer to be

vanishingly thin and the velocities in it to be vanishingly small as v - 0, but

the hypothesis (6. 8) on which the theory is based needs modification. Let us

concentrate attention on the zone R+ in the neighborhood of 0 = and

suppose that, instead of assumption (6. 8),

8/8; = 0(V-P, 88A = 0(v-) , (7.1)

where 1/2 > p > q > 0; thus we expect the boundary layer to be thicker in R+

and rapid changes to occur in the IA-direction but that the most rapid changes

still occur in the ý-direction. It will be shown that p = 2/5, q = 1/5 leads

to a consistent picture.
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Further we shall assume that

Ule = r U o(vr (7.2)

where r > 0 . The equation of continuity (6.13) may now be written as

1 l 2 .- aule I U G(7.3)
h 4 a he 81

where h t and h are now constants, so that ul• = I . The

equation of momentum in the e-direction reduces to

v a 2 u10- % -Z lCOO coý U (l-IL2) an 1 (74
h 2 K2 10 1, P ah (7.4)

notice that in R+, sulo = 20 cos e u1 9 by equations (6.16) and (6.17). It

follows from equation (7.4) that 11 = O(V l+r- 2p+q) . The equation of momentum

in the 9;- direction reduces to

82U
h 4 2 , SUl + 2 17(cos i ul1÷ sinp ulg) (7.5)h2 a2 l +lOI

the pressure terms being of smaller order than the other terms of equation (7. 5)

since 8H 1/a8 2-i1 . The equation of momentum in the ;-direction is

I an1h- = 2 pUlsinqi , (7.6)
h 48;
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the viscous terms being negligible because 811I /a >> 811 /8R in virtue of

assumption (7.1), and ult<< u1o in virtue of assumption (7.2) and equation

(7.3). It is to be particularly noted that this equation is identical with

equation (6.12), and that both the equations used to derive the basic

result (6.14) hold also in R . Consequently, our aim here is to find the

contribution of R to equation (6.14). If we now eliminate r1 and ul from

equations (7. 3) to (7. 6), and write

Z =+ u1 - iu 1V (7.7)

we find that

v 83Z+ 8Z+ h 1 s aZ+
h - 2Cos - in (l-t ýL i- (7.8)

h t 2 at 3 0

Similarly, if

Z- = U10 + iulq (7.9)

vaZ8Z h• 8Z
Va3z az h a

h 3 = (s+ZUl cos i) -C-+ 2Mf sinh ) (7.10)

Thus, in equation (7. 8), the last term on the right-hand side may be neglected

except in R+, and, in equation (7.9), the last term may be neglected except

in R-, the neighborhood of L = ir - b 0 . Concentrating attention on R+ P

let us write 0 = + k where % is small. Then equation (7. 8) simplifies

to
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v a 3z + = 12sn Taz + - h in. az+ (.0h 8z 8z 8
h ± =2iatsin 0 ' at kE t 0 (7.10

From a comparison of the orders of magnitude of the three terms composing

equation (7.10), and by using the assumed properties (7.1), we have

a b=- . (7.11)55

Outside R+

Z+ = Be("E) (7.12)

by equations (6.17). Consequently on the edge of R+ where I÷-%1 is

small but v- 1/, is large,

Z - --- exp[{2in h 2 sin% T-1(4-E)] , (7.13)

where B1 is a factor of order unity. Comparing the orders of magnitude, it

follows that

Z+ = 0(v' /5) (7.14)

in R+ . Moreover 8Z+/8a = 0(l) in R+, as it must be since it is required to

play a part in the cancellation of the tangential stresses. Although it has not

been explicitly evaluated, the determination of Z+ in R seems to be a

properly posed problem since, for not only do we have the behaviors (7.13) to

determine the relevant solution of equation (7. 10) at the edges of R +, but we
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also have Z+-. 0 as , - -cc and, finally, 8Z+/8/ a known stress on = : E

Referring back to Section VI, the presence of the singular lines led to two

apparent difficulties peculiar to the boundary layers studied here. First, it

was not clear that the orders of integration and differentiation can be inverted

as was done in evaluating the integral (6.5) from the result (6.23). Now that

the behavior of Z + in R+ and, by implication, of Z-in R_ is seen to be

satisfactory, we can justify the inversion by dividing up the interval -I <_a<I

into three regions by separating out R_ and R+ . In none of these three

regions does the inversion present any difficulty. Second, a question arose

concerning the contribution from RI+ and R_ to y via the first term on the

right-hand side of equation (6.15). The contribution from R+ is easily seen

to be of the same order in v as

fff dp dd* Z÷(s-21Q cos )

i.e. as

fffd dtd*Z % (7.15)

and, using the results (7.11) and (7.14), this integral is of order 0/3 . Thus

we see that, although the velocities in the neighborhood of R+ are larger by

a factor of v-1110 than those elsewhere in the boundary layer, their contribution

to y is smaller by a factor of v 1/5 . A similar remark applies to R .
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